ActiViz .NET  5.8.0
Public Member Functions | Static Public Member Functions | Public Attributes | Static Public Attributes | Protected Member Functions | Static Private Member Functions | List of all members
Kitware.VTK.vtkLineIntegralConvolution2D Class Reference

vtkLineIntegralConvolution2D - GPU-based implementation of Line Integral Convolution (LIC) More...

Inheritance diagram for Kitware.VTK.vtkLineIntegralConvolution2D:
[legend]
Collaboration diagram for Kitware.VTK.vtkLineIntegralConvolution2D:
[legend]

Public Member Functions

 vtkLineIntegralConvolution2D (IntPtr rawCppThis, bool callDisposalMethod, bool strong)
 Automatically generated constructor - called from generated code. DO NOT call directly.
 vtkLineIntegralConvolution2D ()
 Undocumented Block
virtual void EnhancedLICOff ()
 Enable/Disable enhanced LIC that improves image quality by increasing inter-streamline contrast while suppressing artifacts. Enhanced LIC performs two passes of LIC, with a 3x3 Laplacian high-pass filter in between that processes the output of pass #1 LIC and forwards the result as the input 'noise' to pass #2 LIC. This flag is automatically turned off during user interaction.
virtual void EnhancedLICOn ()
 Enable/Disable enhanced LIC that improves image quality by increasing inter-streamline contrast while suppressing artifacts. Enhanced LIC performs two passes of LIC, with a 3x3 Laplacian high-pass filter in between that processes the output of pass #1 LIC and forwards the result as the input 'noise' to pass #2 LIC. This flag is automatically turned off during user interaction.
int Execute ()
 Perform the LIC and obtain the LIC texture. Return 1 if no error.
int Execute (IntPtr extent)
 Same as Execute() except that the LIC operation is performed only on a window (given by the extent) in the input VectorField. The extent is relative to the input VectorField. The output LIC image will be of the size specified by extent.
virtual int[] GetComponentIds ()
 If VectorField has >= 3 components, we must choose which 2 components form the (X, Y) components for the vector field. Must be in the range [0, 3].
virtual void GetComponentIds (ref int _arg1, ref int _arg2)
 If VectorField has >= 3 components, we must choose which 2 components form the (X, Y) components for the vector field. Must be in the range [0, 3].
virtual void GetComponentIds (IntPtr _arg)
 If VectorField has >= 3 components, we must choose which 2 components form the (X, Y) components for the vector field. Must be in the range [0, 3].
virtual int GetEnhancedLIC ()
 Enable/Disable enhanced LIC that improves image quality by increasing inter-streamline contrast while suppressing artifacts. Enhanced LIC performs two passes of LIC, with a 3x3 Laplacian high-pass filter in between that processes the output of pass #1 LIC and forwards the result as the input 'noise' to pass #2 LIC. This flag is automatically turned off during user interaction.
virtual double[] GetGridSpacings ()
 Set/Get the spacing in each dimension of the plane on which the vector field is defined. This class performs LIC in the normalized image space and hence generally it needs to transform the input vector field (given in physical space) to the normalized image space. The Spacing is needed to determine the tranform. Default is (1.0, 1.0). It is possible to disable vector transformation by setting TransformVectors to 0.
virtual void GetGridSpacings (ref double _arg1, ref double _arg2)
 Set/Get the spacing in each dimension of the plane on which the vector field is defined. This class performs LIC in the normalized image space and hence generally it needs to transform the input vector field (given in physical space) to the normalized image space. The Spacing is needed to determine the tranform. Default is (1.0, 1.0). It is possible to disable vector transformation by setting TransformVectors to 0.
virtual void GetGridSpacings (IntPtr _arg)
 Set/Get the spacing in each dimension of the plane on which the vector field is defined. This class performs LIC in the normalized image space and hence generally it needs to transform the input vector field (given in physical space) to the normalized image space. The Spacing is needed to determine the tranform. Default is (1.0, 1.0). It is possible to disable vector transformation by setting TransformVectors to 0.
virtual vtkTextureObject GetLIC ()
 LIC texture (initial value is NULL) set by Execute().
virtual int GetLICForSurface ()
 Enable/Disable LICForSurface, for which the LIC texture is composited with the underlying geometry.
virtual double GetLICStepSize ()
 Get/Set the streamline integration step size (0.01 by default). This is the length of each step in normalized image space i.e. in range [0, 1]. In term of visual quality, the smaller the better. The type for the interface is double as VTK interface is, but GPU only supports float. Thus it will be converted to float in the execution of the algorithm.
virtual double GetLICStepSizeMaxValue ()
 Get/Set the streamline integration step size (0.01 by default). This is the length of each step in normalized image space i.e. in range [0, 1]. In term of visual quality, the smaller the better. The type for the interface is double as VTK interface is, but GPU only supports float. Thus it will be converted to float in the execution of the algorithm.
virtual double GetLICStepSizeMinValue ()
 Get/Set the streamline integration step size (0.01 by default). This is the length of each step in normalized image space i.e. in range [0, 1]. In term of visual quality, the smaller the better. The type for the interface is double as VTK interface is, but GPU only supports float. Thus it will be converted to float in the execution of the algorithm.
virtual int GetMagnification ()
 The the magnification factor (default is 1.0).
virtual int GetMagnificationMaxValue ()
 The the magnification factor (default is 1.0).
virtual int GetMagnificationMinValue ()
 The the magnification factor (default is 1.0).
virtual vtkTextureObject GetNoise ()
 Set/Get the input white noise texture (initial value is NULL).
virtual int GetNumberOfSteps ()
 Number of streamline integration steps (initial value is 1). In term of visual quality, the greater (within some range) the better.
virtual int GetTransformVectors ()
 This class performs LIC in the normalized image space. Hence, by default it transforms the input vectors to the normalized image space (using the GridSpacings and input vector field dimensions). Set this to 0 to disable tranformation if the vectors are already tranformed.
virtual int GetTransformVectorsMaxValue ()
 This class performs LIC in the normalized image space. Hence, by default it transforms the input vectors to the normalized image space (using the GridSpacings and input vector field dimensions). Set this to 0 to disable tranformation if the vectors are already tranformed.
virtual int GetTransformVectorsMinValue ()
 This class performs LIC in the normalized image space. Hence, by default it transforms the input vectors to the normalized image space (using the GridSpacings and input vector field dimensions). Set this to 0 to disable tranformation if the vectors are already tranformed.
virtual vtkTextureObject GetVectorField ()
 Set/Get the vector field (initial value is NULL).
override int IsA (string type)
 Undocumented Block
virtual void LICForSurfaceOff ()
 Enable/Disable LICForSurface, for which the LIC texture is composited with the underlying geometry.
virtual void LICForSurfaceOn ()
 Enable/Disable LICForSurface, for which the LIC texture is composited with the underlying geometry.
new vtkLineIntegralConvolution2D NewInstance ()
 Undocumented Block
virtual void SetComponentIds (int _arg1, int _arg2)
 If VectorField has >= 3 components, we must choose which 2 components form the (X, Y) components for the vector field. Must be in the range [0, 3].
void SetComponentIds (IntPtr _arg)
 If VectorField has >= 3 components, we must choose which 2 components form the (X, Y) components for the vector field. Must be in the range [0, 3].
virtual void SetEnhancedLIC (int _arg)
 Enable/Disable enhanced LIC that improves image quality by increasing inter-streamline contrast while suppressing artifacts. Enhanced LIC performs two passes of LIC, with a 3x3 Laplacian high-pass filter in between that processes the output of pass #1 LIC and forwards the result as the input 'noise' to pass #2 LIC. This flag is automatically turned off during user interaction.
virtual void SetGridSpacings (double _arg1, double _arg2)
 Set/Get the spacing in each dimension of the plane on which the vector field is defined. This class performs LIC in the normalized image space and hence generally it needs to transform the input vector field (given in physical space) to the normalized image space. The Spacing is needed to determine the tranform. Default is (1.0, 1.0). It is possible to disable vector transformation by setting TransformVectors to 0.
void SetGridSpacings (IntPtr _arg)
 Set/Get the spacing in each dimension of the plane on which the vector field is defined. This class performs LIC in the normalized image space and hence generally it needs to transform the input vector field (given in physical space) to the normalized image space. The Spacing is needed to determine the tranform. Default is (1.0, 1.0). It is possible to disable vector transformation by setting TransformVectors to 0.
void SetLIC (vtkTextureObject lic)
 LIC texture (initial value is NULL) set by Execute().
virtual void SetLICForSurface (int _arg)
 Enable/Disable LICForSurface, for which the LIC texture is composited with the underlying geometry.
virtual void SetLICStepSize (double _arg)
 Get/Set the streamline integration step size (0.01 by default). This is the length of each step in normalized image space i.e. in range [0, 1]. In term of visual quality, the smaller the better. The type for the interface is double as VTK interface is, but GPU only supports float. Thus it will be converted to float in the execution of the algorithm.
virtual void SetMagnification (int _arg)
 The the magnification factor (default is 1.0).
void SetNoise (vtkTextureObject noise)
 Set/Get the input white noise texture (initial value is NULL).
virtual void SetNumberOfSteps (int _arg)
 Number of streamline integration steps (initial value is 1). In term of visual quality, the greater (within some range) the better.
virtual void SetTransformVectors (int _arg)
 This class performs LIC in the normalized image space. Hence, by default it transforms the input vectors to the normalized image space (using the GridSpacings and input vector field dimensions). Set this to 0 to disable tranformation if the vectors are already tranformed.
void SetVectorField (vtkTextureObject vectorField)
 Set/Get the vector field (initial value is NULL).
void SetVectorShiftScale (double shift, double scale)
 On machines where the vector field texture is clamped between [0,1], one can specify the shift/scale factor used to convert the original vector field to lie in the clamped range. Default is (0.0, 1.0);
virtual void TransformVectorsOff ()
 This class performs LIC in the normalized image space. Hence, by default it transforms the input vectors to the normalized image space (using the GridSpacings and input vector field dimensions). Set this to 0 to disable tranformation if the vectors are already tranformed.
virtual void TransformVectorsOn ()
 This class performs LIC in the normalized image space. Hence, by default it transforms the input vectors to the normalized image space (using the GridSpacings and input vector field dimensions). Set this to 0 to disable tranformation if the vectors are already tranformed.
- Public Member Functions inherited from Kitware.VTK.vtkObject
 vtkObject (IntPtr rawCppThis, bool callDisposalMethod, bool strong)
 Automatically generated constructor - called from generated code. DO NOT call directly.
 vtkObject ()
 Create an object with Debug turned off, modified time initialized to zero, and reference counting on.
uint AddObserver (uint arg0, vtkCommand arg1, float priority)
 This is a global flag that controls whether any debug, warning or error messages are displayed.
uint AddObserver (string arg0, vtkCommand arg1, float priority)
 This is a global flag that controls whether any debug, warning or error messages are displayed.
virtual void DebugOff ()
 Turn debugging output off.
virtual void DebugOn ()
 Turn debugging output on.
vtkCommand GetCommand (uint tag)
 This is a global flag that controls whether any debug, warning or error messages are displayed.
byte GetDebug ()
 Get the value of the debug flag.
virtual uint GetMTime ()
 Return this object's modified time.
int HasObserver (uint arg0, vtkCommand arg1)
 This is a global flag that controls whether any debug, warning or error messages are displayed.
int HasObserver (string arg0, vtkCommand arg1)
 This is a global flag that controls whether any debug, warning or error messages are displayed.
int HasObserver (uint arg0)
 This is a global flag that controls whether any debug, warning or error messages are displayed.
int HasObserver (string arg0)
 This is a global flag that controls whether any debug, warning or error messages are displayed.
int InvokeEvent (uint arg0, IntPtr callData)
 This is a global flag that controls whether any debug, warning or error messages are displayed.
int InvokeEvent (string arg0, IntPtr callData)
 This is a global flag that controls whether any debug, warning or error messages are displayed.
int InvokeEvent (uint arg0)
 This is a global flag that controls whether any debug, warning or error messages are displayed.
int InvokeEvent (string arg0)
 This is a global flag that controls whether any debug, warning or error messages are displayed.
virtual void Modified ()
 Update the modification time for this object. Many filters rely on the modification time to determine if they need to recompute their data. The modification time is a unique monotonically increasing unsigned long integer.
void RemoveAllObservers ()
 This is a global flag that controls whether any debug, warning or error messages are displayed.
void RemoveObserver (vtkCommand arg0)
 This is a global flag that controls whether any debug, warning or error messages are displayed.
void RemoveObserver (uint tag)
 This is a global flag that controls whether any debug, warning or error messages are displayed.
void RemoveObservers (uint arg0, vtkCommand arg1)
 This is a global flag that controls whether any debug, warning or error messages are displayed.
void RemoveObservers (string arg0, vtkCommand arg1)
 This is a global flag that controls whether any debug, warning or error messages are displayed.
void RemoveObservers (uint arg0)
 This is a global flag that controls whether any debug, warning or error messages are displayed.
void RemoveObservers (string arg0)
 This is a global flag that controls whether any debug, warning or error messages are displayed.
void SetDebug (byte debugFlag)
 Set the value of the debug flag. A non-zero value turns debugging on.
override string ToString ()
 Returns the result of calling vtkObject::Print as a C# string.
delegate void vtkObjectEventHandler (vtkObject sender, vtkObjectEventArgs e)
 Generic signature for all vtkObject events.
void RemoveAllHandlersForAllEvents ()
 Call RemoveAllHandlers on each non-null vtkObjectEventRelay. TODO: This method needs to get called by the generated Dispose. Make that happen...
- Public Member Functions inherited from Kitware.VTK.vtkObjectBase
 vtkObjectBase (IntPtr rawCppThis, bool callDisposalMethod, bool strong)
 Automatically generated constructor - called from generated code. DO NOT call directly.
 vtkObjectBase ()
 Create an object with Debug turned off, modified time initialized to zero, and reference counting on.
virtual void Register (vtkObjectBase o)
 Increase the reference count (mark as used by another object).
virtual void FastDelete ()
 Delete a reference to this object. This version will not invoke garbage collection and can potentially leak the object if it is part of a reference loop. Use this method only when it is known that the object has another reference and would not be collected if a full garbage collection check were done.
string GetClassName ()
 Return the class name as a string. This method is defined in all subclasses of vtkObjectBase with the vtkTypeMacro found in vtkSetGet.h.
int GetReferenceCount ()
 Return the current reference count of this object.
void SetReferenceCount (int arg0)
 Sets the reference count. (This is very dangerous, use with care.)

Static Public Member Functions

static new
vtkLineIntegralConvolution2D 
New ()
 Undocumented Block
static bool IsSupported (vtkRenderWindow renWin)
 Returns if the context supports the required extensions.
static new int IsTypeOf (string type)
 Undocumented Block
static new
vtkLineIntegralConvolution2D 
SafeDownCast (vtkObjectBase o)
 Undocumented Block
- Static Public Member Functions inherited from Kitware.VTK.vtkObject
static void BreakOnError ()
 This method is called when vtkErrorMacro executes. It allows the debugger to break on error.
static int GetGlobalWarningDisplay ()
 This is a global flag that controls whether any debug, warning or error messages are displayed.
static void GlobalWarningDisplayOff ()
 This is a global flag that controls whether any debug, warning or error messages are displayed.
static void GlobalWarningDisplayOn ()
 This is a global flag that controls whether any debug, warning or error messages are displayed.
static void SetGlobalWarningDisplay (int val)
 This is a global flag that controls whether any debug, warning or error messages are displayed.

Public Attributes

new const string MRFullTypeName = "Kitware.VTK.vtkLineIntegralConvolution2D"
 Automatically generated type registration mechanics.
- Public Attributes inherited from Kitware.VTK.vtkObject
new const string MRFullTypeName = "Kitware.VTK.vtkObject"
 Automatically generated type registration mechanics.
- Public Attributes inherited from Kitware.VTK.vtkObjectBase
new const string MRFullTypeName = "Kitware.VTK.vtkObjectBase"
 Automatically generated type registration mechanics.
- Public Attributes inherited from Kitware.VTK.WrappedObject
const string vtkChartsEL_dll = "libKitware.VTK.vtkCharts.Unmanaged.so"
 Export layer functions for 'vtkCharts' are exported from the DLL named by the value of this variable.
const string vtkCommonEL_dll = "libKitware.VTK.vtkCommon.Unmanaged.so"
 Export layer functions for 'vtkCommon' are exported from the DLL named by the value of this variable.
const string vtkFilteringEL_dll = "libKitware.VTK.vtkFiltering.Unmanaged.so"
 Export layer functions for 'vtkFiltering' are exported from the DLL named by the value of this variable.
const string vtkGenericFilteringEL_dll = "libKitware.VTK.vtkGenericFiltering.Unmanaged.so"
 Export layer functions for 'vtkGenericFiltering' are exported from the DLL named by the value of this variable.
const string vtkGeovisEL_dll = "libKitware.VTK.vtkGeovis.Unmanaged.so"
 Export layer functions for 'vtkGeovis' are exported from the DLL named by the value of this variable.
const string vtkGraphicsEL_dll = "libKitware.VTK.vtkGraphics.Unmanaged.so"
 Export layer functions for 'vtkGraphics' are exported from the DLL named by the value of this variable.
const string vtkHybridEL_dll = "libKitware.VTK.vtkHybrid.Unmanaged.so"
 Export layer functions for 'vtkHybrid' are exported from the DLL named by the value of this variable.
const string vtkIOEL_dll = "libKitware.VTK.vtkIO.Unmanaged.so"
 Export layer functions for 'vtkIO' are exported from the DLL named by the value of this variable.
const string vtkImagingEL_dll = "libKitware.VTK.vtkImaging.Unmanaged.so"
 Export layer functions for 'vtkImaging' are exported from the DLL named by the value of this variable.
const string vtkInfovisEL_dll = "libKitware.VTK.vtkInfovis.Unmanaged.so"
 Export layer functions for 'vtkInfovis' are exported from the DLL named by the value of this variable.
const string vtkParallelEL_dll = "libKitware.VTK.vtkParallel.Unmanaged.so"
 Export layer functions for 'vtkParallel' are exported from the DLL named by the value of this variable.
const string vtkRenderingEL_dll = "libKitware.VTK.vtkRendering.Unmanaged.so"
 Export layer functions for 'vtkRendering' are exported from the DLL named by the value of this variable.
const string vtkViewsEL_dll = "libKitware.VTK.vtkViews.Unmanaged.so"
 Export layer functions for 'vtkViews' are exported from the DLL named by the value of this variable.
const string vtkVolumeRenderingEL_dll = "libKitware.VTK.vtkVolumeRendering.Unmanaged.so"
 Export layer functions for 'vtkVolumeRendering' are exported from the DLL named by the value of this variable.
const string vtkWidgetsEL_dll = "libKitware.VTK.vtkWidgets.Unmanaged.so"
 Export layer functions for 'vtkWidgets' are exported from the DLL named by the value of this variable.

Static Public Attributes

static new readonly string MRClassNameKey = "28vtkLineIntegralConvolution2D"
 Automatically generated type registration mechanics.
- Static Public Attributes inherited from Kitware.VTK.vtkObject
static new readonly string MRClassNameKey = "9vtkObject"
 Automatically generated type registration mechanics.
- Static Public Attributes inherited from Kitware.VTK.vtkObjectBase
static new readonly string MRClassNameKey = "13vtkObjectBase"
 Automatically generated type registration mechanics.

Protected Member Functions

override void Dispose (bool disposing)
 Automatically generated protected Dispose method - called from public Dispose or the C# destructor. DO NOT call directly.

Static Private Member Functions

static vtkLineIntegralConvolution2D ()
 Automatically generated type registration mechanics.

Additional Inherited Members

- Properties inherited from Kitware.VTK.vtkObject
Kitware.VTK.vtkObject.vtkObjectEventHandler AbortCheckEvt
 The AbortCheckEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.AbortCheckEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler AnimationCueTickEvt
 The AnimationCueTickEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.AnimationCueTickEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler AnyEvt
 The AnyEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.AnyEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler CharEvt
 The CharEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.CharEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler ConfigureEvt
 The ConfigureEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.ConfigureEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler ConnectionClosedEvt
 The ConnectionClosedEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.ConnectionClosedEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler ConnectionCreatedEvt
 The ConnectionCreatedEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.ConnectionCreatedEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler CreateTimerEvt
 The CreateTimerEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.CreateTimerEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler CursorChangedEvt
 The CursorChangedEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.CursorChangedEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler DeleteEvt
 The DeleteEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.DeleteEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler DestroyTimerEvt
 The DestroyTimerEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.DestroyTimerEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler DisableEvt
 The DisableEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.DisableEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler DomainModifiedEvt
 The DomainModifiedEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.DomainModifiedEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler EnableEvt
 The EnableEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.EnableEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler EndAnimationCueEvt
 The EndAnimationCueEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.EndAnimationCueEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler EndEvt
 The EndEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.EndEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler EndInteractionEvt
 The EndInteractionEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.EndInteractionEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler EndPickEvt
 The EndPickEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.EndPickEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler EndWindowLevelEvt
 The EndWindowLevelEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.EndWindowLevelEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler EnterEvt
 The EnterEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.EnterEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler ErrorEvt
 The ErrorEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.ErrorEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler ExecuteInformationEvt
 The ExecuteInformationEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.ExecuteInformationEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler ExitEvt
 The ExitEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.ExitEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler ExposeEvt
 The ExposeEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.ExposeEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler InteractionEvt
 The InteractionEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.InteractionEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler KeyPressEvt
 The KeyPressEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.KeyPressEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler KeyReleaseEvt
 The KeyReleaseEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.KeyReleaseEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler LeaveEvt
 The LeaveEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.LeaveEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler LeftButtonPressEvt
 The LeftButtonPressEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.LeftButtonPressEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler LeftButtonReleaseEvt
 The LeftButtonReleaseEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.LeftButtonReleaseEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler MiddleButtonPressEvt
 The MiddleButtonPressEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.MiddleButtonPressEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler MiddleButtonReleaseEvt
 The MiddleButtonReleaseEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.MiddleButtonReleaseEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler ModifiedEvt
 The ModifiedEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.ModifiedEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler MouseMoveEvt
 The MouseMoveEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.MouseMoveEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler MouseWheelBackwardEvt
 The MouseWheelBackwardEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.MouseWheelBackwardEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler MouseWheelForwardEvt
 The MouseWheelForwardEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.MouseWheelForwardEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler PickEvt
 The PickEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.PickEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler PlacePointEvt
 The PlacePointEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.PlacePointEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler PlaceWidgetEvt
 The PlaceWidgetEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.PlaceWidgetEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler ProgressEvt
 The ProgressEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.ProgressEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler PropertyModifiedEvt
 The PropertyModifiedEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.PropertyModifiedEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler RegisterEvt
 The RegisterEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.RegisterEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler RenderEvt
 The RenderEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.RenderEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler RenderWindowMessageEvt
 The RenderWindowMessageEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.RenderWindowMessageEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler ResetCameraClippingRangeEvt
 The ResetCameraClippingRangeEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.ResetCameraClippingRangeEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler ResetCameraEvt
 The ResetCameraEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.ResetCameraEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler ResetWindowLevelEvt
 The ResetWindowLevelEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.ResetWindowLevelEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler RightButtonPressEvt
 The RightButtonPressEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.RightButtonPressEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler RightButtonReleaseEvt
 The RightButtonReleaseEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.RightButtonReleaseEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler SelectionChangedEvt
 The SelectionChangedEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.SelectionChangedEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler SetOutputEvt
 The SetOutputEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.SetOutputEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler StartAnimationCueEvt
 The StartAnimationCueEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.StartAnimationCueEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler StartEvt
 The StartEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.StartEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler StartInteractionEvt
 The StartInteractionEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.StartInteractionEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler StartPickEvt
 The StartPickEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.StartPickEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler StartWindowLevelEvt
 The StartWindowLevelEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.StartWindowLevelEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler TimerEvt
 The TimerEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.TimerEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler UnRegisterEvt
 The UnRegisterEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.UnRegisterEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler UpdateEvt
 The UpdateEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.UpdateEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler UpdateInformationEvt
 The UpdateInformationEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.UpdateInformationEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler UpdatePropertyEvt
 The UpdatePropertyEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.UpdatePropertyEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler VolumeMapperComputeGradientsEndEvt
 The VolumeMapperComputeGradientsEndEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.VolumeMapperComputeGradientsEndEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler VolumeMapperComputeGradientsProgressEvt
 The VolumeMapperComputeGradientsProgressEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.VolumeMapperComputeGradientsProgressEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler VolumeMapperComputeGradientsStartEvt
 The VolumeMapperComputeGradientsStartEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.VolumeMapperComputeGradientsStartEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler VolumeMapperRenderEndEvt
 The VolumeMapperRenderEndEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.VolumeMapperRenderEndEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler VolumeMapperRenderProgressEvt
 The VolumeMapperRenderProgressEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.VolumeMapperRenderProgressEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler VolumeMapperRenderStartEvt
 The VolumeMapperRenderStartEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.VolumeMapperRenderStartEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler WarningEvt
 The WarningEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.WarningEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler WidgetActivateEvt
 The WidgetActivateEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.WidgetActivateEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler WidgetModifiedEvt
 The WidgetModifiedEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.WidgetModifiedEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler WidgetValueChangedEvt
 The WidgetValueChangedEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.WidgetValueChangedEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler WindowLevelEvt
 The WindowLevelEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.WindowLevelEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler WrongTagEvt
 The WrongTagEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.WrongTagEvent as the eventId parameter.

Detailed Description

vtkLineIntegralConvolution2D - GPU-based implementation of Line Integral Convolution (LIC)

Description This class resorts to GLSL to implement GPU-based Line Integral Convolution (LIC) for visualizing a 2D vector field that may be obtained by projecting an original 3D vector field onto a surface (such that the resulting 2D vector at each grid point on the surface is tangential to the local normal, as done in vtkSurfaceLICPainter).

As an image-based technique, 2D LIC works by (1) integrating a bidirectional streamline from the center of each pixel (of the LIC output image), (2) locating the pixels along / hit by this streamline as the correlated pixels of the starting pixel (seed point / pixel), (3) indexing a (usually white) noise texture (another input to LIC, in addition to the 2D vector field, usually with the same size as that of the 2D vetor field) to determine the values (colors) of these pixels (the starting and the correlated pixels), typically through bi-linear interpolation, and (4) performing convolution (weighted averaging) on these values, by adopting a low-pass filter (such as box, ramp, and Hanning kernels), to obtain the result value (color) that is then assigned to the seed pixel.

The GLSL-based GPU implementation herein maps the aforementioned pipeline to fragment shaders and a box kernel is employed. Both the white noise and the vector field are provided to the GPU as texture objects (supported by the multi-texturing capability). In addition, there are four texture objects (color buffers) allocated to constitute two pairs that work in a ping-pong fashion, with one as the read buffers and the other as the write / render targets. Maintained by a frame buffer object (GL_EXT_framebuffer_object), each pair employs one buffer to store the current (dynamically updated) position (by means of the texture coordinate that keeps being warped by the underlying vector) of the (virtual) particle initially released from each fragment while using the bother buffer to store the current (dynamically updated too) accumulated texture value that each seed fragment (before the 'mesh' is warped) collects. Given NumberOfSteps integration steps in each direction, there are a total of (2 * NumberOfSteps + 1) fragments (including the seed fragment) are convolved and each contributes 1 / (2 * NumberOfSteps

One pass of LIC (basic LIC) tends to produce low-contrast / blurred images and vtkLineIntegralConvolution2D provides an option for creating enhanced LIC images. Enhanced LIC improves image quality by increasing inter-streamline contrast while suppressing artifacts. It performs two passes of LIC, with a 3x3 Laplacian high-pass filter in between that processes the output of pass #1 LIC and forwards the result as the input 'noise' to pass #2 LIC. Enhanced LIC automatically degenerates to basic LIC during user interaction.

vtkLineIntegralConvolution2D applies masking to zero-vector fragments so that un-filtered white noise areas are made totally transparent by class vtkSurfaceLICPainter to show the underlying geometry surface.

Required OpenGL Extensins GL_ARB_texture_non_power_of_two GL_VERSION_2_0 GL_ARB_texture_float GL_ARB_draw_buffers GL_EXT_framebuffer_object

vtkSurfaceLICPainter vtkImageDataLIC2D vtkStructuredGridLIC2D

Constructor & Destructor Documentation

static Kitware.VTK.vtkLineIntegralConvolution2D.vtkLineIntegralConvolution2D ( )
staticprivate

Automatically generated type registration mechanics.

Kitware.VTK.vtkLineIntegralConvolution2D.vtkLineIntegralConvolution2D ( IntPtr  rawCppThis,
bool  callDisposalMethod,
bool  strong 
)

Automatically generated constructor - called from generated code. DO NOT call directly.

Kitware.VTK.vtkLineIntegralConvolution2D.vtkLineIntegralConvolution2D ( )

Undocumented Block

Member Function Documentation

override void Kitware.VTK.vtkLineIntegralConvolution2D.Dispose ( bool  disposing)
protected

Automatically generated protected Dispose method - called from public Dispose or the C# destructor. DO NOT call directly.

Reimplemented from Kitware.VTK.vtkObject.

virtual void Kitware.VTK.vtkLineIntegralConvolution2D.EnhancedLICOff ( )
virtual

Enable/Disable enhanced LIC that improves image quality by increasing inter-streamline contrast while suppressing artifacts. Enhanced LIC performs two passes of LIC, with a 3x3 Laplacian high-pass filter in between that processes the output of pass #1 LIC and forwards the result as the input 'noise' to pass #2 LIC. This flag is automatically turned off during user interaction.

virtual void Kitware.VTK.vtkLineIntegralConvolution2D.EnhancedLICOn ( )
virtual

Enable/Disable enhanced LIC that improves image quality by increasing inter-streamline contrast while suppressing artifacts. Enhanced LIC performs two passes of LIC, with a 3x3 Laplacian high-pass filter in between that processes the output of pass #1 LIC and forwards the result as the input 'noise' to pass #2 LIC. This flag is automatically turned off during user interaction.

int Kitware.VTK.vtkLineIntegralConvolution2D.Execute ( )

Perform the LIC and obtain the LIC texture. Return 1 if no error.

int Kitware.VTK.vtkLineIntegralConvolution2D.Execute ( IntPtr  extent)

Same as Execute() except that the LIC operation is performed only on a window (given by the extent) in the input VectorField. The extent is relative to the input VectorField. The output LIC image will be of the size specified by extent.

virtual int [] Kitware.VTK.vtkLineIntegralConvolution2D.GetComponentIds ( )
virtual

If VectorField has >= 3 components, we must choose which 2 components form the (X, Y) components for the vector field. Must be in the range [0, 3].

virtual void Kitware.VTK.vtkLineIntegralConvolution2D.GetComponentIds ( ref int  _arg1,
ref int  _arg2 
)
virtual

If VectorField has >= 3 components, we must choose which 2 components form the (X, Y) components for the vector field. Must be in the range [0, 3].

virtual void Kitware.VTK.vtkLineIntegralConvolution2D.GetComponentIds ( IntPtr  _arg)
virtual

If VectorField has >= 3 components, we must choose which 2 components form the (X, Y) components for the vector field. Must be in the range [0, 3].

virtual int Kitware.VTK.vtkLineIntegralConvolution2D.GetEnhancedLIC ( )
virtual

Enable/Disable enhanced LIC that improves image quality by increasing inter-streamline contrast while suppressing artifacts. Enhanced LIC performs two passes of LIC, with a 3x3 Laplacian high-pass filter in between that processes the output of pass #1 LIC and forwards the result as the input 'noise' to pass #2 LIC. This flag is automatically turned off during user interaction.

virtual double [] Kitware.VTK.vtkLineIntegralConvolution2D.GetGridSpacings ( )
virtual

Set/Get the spacing in each dimension of the plane on which the vector field is defined. This class performs LIC in the normalized image space and hence generally it needs to transform the input vector field (given in physical space) to the normalized image space. The Spacing is needed to determine the tranform. Default is (1.0, 1.0). It is possible to disable vector transformation by setting TransformVectors to 0.

virtual void Kitware.VTK.vtkLineIntegralConvolution2D.GetGridSpacings ( ref double  _arg1,
ref double  _arg2 
)
virtual

Set/Get the spacing in each dimension of the plane on which the vector field is defined. This class performs LIC in the normalized image space and hence generally it needs to transform the input vector field (given in physical space) to the normalized image space. The Spacing is needed to determine the tranform. Default is (1.0, 1.0). It is possible to disable vector transformation by setting TransformVectors to 0.

virtual void Kitware.VTK.vtkLineIntegralConvolution2D.GetGridSpacings ( IntPtr  _arg)
virtual

Set/Get the spacing in each dimension of the plane on which the vector field is defined. This class performs LIC in the normalized image space and hence generally it needs to transform the input vector field (given in physical space) to the normalized image space. The Spacing is needed to determine the tranform. Default is (1.0, 1.0). It is possible to disable vector transformation by setting TransformVectors to 0.

virtual vtkTextureObject Kitware.VTK.vtkLineIntegralConvolution2D.GetLIC ( )
virtual

LIC texture (initial value is NULL) set by Execute().

Here is the call graph for this function:

virtual int Kitware.VTK.vtkLineIntegralConvolution2D.GetLICForSurface ( )
virtual

Enable/Disable LICForSurface, for which the LIC texture is composited with the underlying geometry.

virtual double Kitware.VTK.vtkLineIntegralConvolution2D.GetLICStepSize ( )
virtual

Get/Set the streamline integration step size (0.01 by default). This is the length of each step in normalized image space i.e. in range [0, 1]. In term of visual quality, the smaller the better. The type for the interface is double as VTK interface is, but GPU only supports float. Thus it will be converted to float in the execution of the algorithm.

virtual double Kitware.VTK.vtkLineIntegralConvolution2D.GetLICStepSizeMaxValue ( )
virtual

Get/Set the streamline integration step size (0.01 by default). This is the length of each step in normalized image space i.e. in range [0, 1]. In term of visual quality, the smaller the better. The type for the interface is double as VTK interface is, but GPU only supports float. Thus it will be converted to float in the execution of the algorithm.

virtual double Kitware.VTK.vtkLineIntegralConvolution2D.GetLICStepSizeMinValue ( )
virtual

Get/Set the streamline integration step size (0.01 by default). This is the length of each step in normalized image space i.e. in range [0, 1]. In term of visual quality, the smaller the better. The type for the interface is double as VTK interface is, but GPU only supports float. Thus it will be converted to float in the execution of the algorithm.

virtual int Kitware.VTK.vtkLineIntegralConvolution2D.GetMagnification ( )
virtual

The the magnification factor (default is 1.0).

virtual int Kitware.VTK.vtkLineIntegralConvolution2D.GetMagnificationMaxValue ( )
virtual

The the magnification factor (default is 1.0).

virtual int Kitware.VTK.vtkLineIntegralConvolution2D.GetMagnificationMinValue ( )
virtual

The the magnification factor (default is 1.0).

virtual vtkTextureObject Kitware.VTK.vtkLineIntegralConvolution2D.GetNoise ( )
virtual

Set/Get the input white noise texture (initial value is NULL).

Here is the call graph for this function:

virtual int Kitware.VTK.vtkLineIntegralConvolution2D.GetNumberOfSteps ( )
virtual

Number of streamline integration steps (initial value is 1). In term of visual quality, the greater (within some range) the better.

virtual int Kitware.VTK.vtkLineIntegralConvolution2D.GetTransformVectors ( )
virtual

This class performs LIC in the normalized image space. Hence, by default it transforms the input vectors to the normalized image space (using the GridSpacings and input vector field dimensions). Set this to 0 to disable tranformation if the vectors are already tranformed.

virtual int Kitware.VTK.vtkLineIntegralConvolution2D.GetTransformVectorsMaxValue ( )
virtual

This class performs LIC in the normalized image space. Hence, by default it transforms the input vectors to the normalized image space (using the GridSpacings and input vector field dimensions). Set this to 0 to disable tranformation if the vectors are already tranformed.

virtual int Kitware.VTK.vtkLineIntegralConvolution2D.GetTransformVectorsMinValue ( )
virtual

This class performs LIC in the normalized image space. Hence, by default it transforms the input vectors to the normalized image space (using the GridSpacings and input vector field dimensions). Set this to 0 to disable tranformation if the vectors are already tranformed.

virtual vtkTextureObject Kitware.VTK.vtkLineIntegralConvolution2D.GetVectorField ( )
virtual

Set/Get the vector field (initial value is NULL).

Here is the call graph for this function:

override int Kitware.VTK.vtkLineIntegralConvolution2D.IsA ( string  type)
virtual

Undocumented Block

Reimplemented from Kitware.VTK.vtkObject.

static bool Kitware.VTK.vtkLineIntegralConvolution2D.IsSupported ( vtkRenderWindow  renWin)
static

Returns if the context supports the required extensions.

static new int Kitware.VTK.vtkLineIntegralConvolution2D.IsTypeOf ( string  type)
static

Undocumented Block

Reimplemented from Kitware.VTK.vtkObject.

virtual void Kitware.VTK.vtkLineIntegralConvolution2D.LICForSurfaceOff ( )
virtual

Enable/Disable LICForSurface, for which the LIC texture is composited with the underlying geometry.

virtual void Kitware.VTK.vtkLineIntegralConvolution2D.LICForSurfaceOn ( )
virtual

Enable/Disable LICForSurface, for which the LIC texture is composited with the underlying geometry.

static new vtkLineIntegralConvolution2D Kitware.VTK.vtkLineIntegralConvolution2D.New ( )
static

Undocumented Block

Reimplemented from Kitware.VTK.vtkObject.

new vtkLineIntegralConvolution2D Kitware.VTK.vtkLineIntegralConvolution2D.NewInstance ( )

Undocumented Block

Reimplemented from Kitware.VTK.vtkObject.

static new vtkLineIntegralConvolution2D Kitware.VTK.vtkLineIntegralConvolution2D.SafeDownCast ( vtkObjectBase  o)
static

Undocumented Block

Reimplemented from Kitware.VTK.vtkObject.

Here is the call graph for this function:

virtual void Kitware.VTK.vtkLineIntegralConvolution2D.SetComponentIds ( int  _arg1,
int  _arg2 
)
virtual

If VectorField has >= 3 components, we must choose which 2 components form the (X, Y) components for the vector field. Must be in the range [0, 3].

void Kitware.VTK.vtkLineIntegralConvolution2D.SetComponentIds ( IntPtr  _arg)

If VectorField has >= 3 components, we must choose which 2 components form the (X, Y) components for the vector field. Must be in the range [0, 3].

virtual void Kitware.VTK.vtkLineIntegralConvolution2D.SetEnhancedLIC ( int  _arg)
virtual

Enable/Disable enhanced LIC that improves image quality by increasing inter-streamline contrast while suppressing artifacts. Enhanced LIC performs two passes of LIC, with a 3x3 Laplacian high-pass filter in between that processes the output of pass #1 LIC and forwards the result as the input 'noise' to pass #2 LIC. This flag is automatically turned off during user interaction.

virtual void Kitware.VTK.vtkLineIntegralConvolution2D.SetGridSpacings ( double  _arg1,
double  _arg2 
)
virtual

Set/Get the spacing in each dimension of the plane on which the vector field is defined. This class performs LIC in the normalized image space and hence generally it needs to transform the input vector field (given in physical space) to the normalized image space. The Spacing is needed to determine the tranform. Default is (1.0, 1.0). It is possible to disable vector transformation by setting TransformVectors to 0.

void Kitware.VTK.vtkLineIntegralConvolution2D.SetGridSpacings ( IntPtr  _arg)

Set/Get the spacing in each dimension of the plane on which the vector field is defined. This class performs LIC in the normalized image space and hence generally it needs to transform the input vector field (given in physical space) to the normalized image space. The Spacing is needed to determine the tranform. Default is (1.0, 1.0). It is possible to disable vector transformation by setting TransformVectors to 0.

void Kitware.VTK.vtkLineIntegralConvolution2D.SetLIC ( vtkTextureObject  lic)

LIC texture (initial value is NULL) set by Execute().

virtual void Kitware.VTK.vtkLineIntegralConvolution2D.SetLICForSurface ( int  _arg)
virtual

Enable/Disable LICForSurface, for which the LIC texture is composited with the underlying geometry.

virtual void Kitware.VTK.vtkLineIntegralConvolution2D.SetLICStepSize ( double  _arg)
virtual

Get/Set the streamline integration step size (0.01 by default). This is the length of each step in normalized image space i.e. in range [0, 1]. In term of visual quality, the smaller the better. The type for the interface is double as VTK interface is, but GPU only supports float. Thus it will be converted to float in the execution of the algorithm.

virtual void Kitware.VTK.vtkLineIntegralConvolution2D.SetMagnification ( int  _arg)
virtual

The the magnification factor (default is 1.0).

void Kitware.VTK.vtkLineIntegralConvolution2D.SetNoise ( vtkTextureObject  noise)

Set/Get the input white noise texture (initial value is NULL).

virtual void Kitware.VTK.vtkLineIntegralConvolution2D.SetNumberOfSteps ( int  _arg)
virtual

Number of streamline integration steps (initial value is 1). In term of visual quality, the greater (within some range) the better.

virtual void Kitware.VTK.vtkLineIntegralConvolution2D.SetTransformVectors ( int  _arg)
virtual

This class performs LIC in the normalized image space. Hence, by default it transforms the input vectors to the normalized image space (using the GridSpacings and input vector field dimensions). Set this to 0 to disable tranformation if the vectors are already tranformed.

void Kitware.VTK.vtkLineIntegralConvolution2D.SetVectorField ( vtkTextureObject  vectorField)

Set/Get the vector field (initial value is NULL).

void Kitware.VTK.vtkLineIntegralConvolution2D.SetVectorShiftScale ( double  shift,
double  scale 
)

On machines where the vector field texture is clamped between [0,1], one can specify the shift/scale factor used to convert the original vector field to lie in the clamped range. Default is (0.0, 1.0);

virtual void Kitware.VTK.vtkLineIntegralConvolution2D.TransformVectorsOff ( )
virtual

This class performs LIC in the normalized image space. Hence, by default it transforms the input vectors to the normalized image space (using the GridSpacings and input vector field dimensions). Set this to 0 to disable tranformation if the vectors are already tranformed.

virtual void Kitware.VTK.vtkLineIntegralConvolution2D.TransformVectorsOn ( )
virtual

This class performs LIC in the normalized image space. Hence, by default it transforms the input vectors to the normalized image space (using the GridSpacings and input vector field dimensions). Set this to 0 to disable tranformation if the vectors are already tranformed.

Member Data Documentation

new readonly string Kitware.VTK.vtkLineIntegralConvolution2D.MRClassNameKey = "28vtkLineIntegralConvolution2D"
static

Automatically generated type registration mechanics.

new const string Kitware.VTK.vtkLineIntegralConvolution2D.MRFullTypeName = "Kitware.VTK.vtkLineIntegralConvolution2D"

Automatically generated type registration mechanics.


The documentation for this class was generated from the following file: