001// --- BEGIN LICENSE BLOCK ---
002/* 
003 * Copyright (c) 2009, Mikio L. Braun
004 * All rights reserved.
005 * 
006 * Redistribution and use in source and binary forms, with or without
007 * modification, are permitted provided that the following conditions are
008 * met:
009 * 
010 *     * Redistributions of source code must retain the above copyright
011 *       notice, this list of conditions and the following disclaimer.
012 * 
013 *     * Redistributions in binary form must reproduce the above
014 *       copyright notice, this list of conditions and the following
015 *       disclaimer in the documentation and/or other materials provided
016 *       with the distribution.
017 * 
018 *     * Neither the name of the Technische Universit?t Berlin nor the
019 *       names of its contributors may be used to endorse or promote
020 *       products derived from this software without specific prior
021 *       written permission.
022 * 
023 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
024 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
025 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
026 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
027 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
028 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
029 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
030 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
031 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
032 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
033 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
034 */
035// --- END LICENSE BLOCK ---
036
037package org.jblas;
038
039/**
040 * Solving linear equations.
041 */
042public class Solve {
043        /** Solves the linear equation A*X = B. */
044        public static DoubleMatrix solve(DoubleMatrix A, DoubleMatrix B) {
045                A.assertSquare();
046                DoubleMatrix X = B.dup();
047                int[] ipiv = new int[B.rows];
048                SimpleBlas.gesv(A.dup(), ipiv, X);
049                return X;
050        }
051
052        /** Solves the linear equation A*X = B for symmetric A. */
053        public static DoubleMatrix solveSymmetric(DoubleMatrix A, DoubleMatrix B) {
054                A.assertSquare();
055                DoubleMatrix X = B.dup();
056                int[] ipiv = new int[B.rows];
057                SimpleBlas.sysv('U', A.dup(), ipiv, X);
058                return X;
059        }
060
061        
062        /** Solves the linear equation A*X = B for symmetric and positive definite A. */
063        public static DoubleMatrix solvePositive(DoubleMatrix A, DoubleMatrix B) {
064                A.assertSquare();
065                DoubleMatrix X = B.dup();
066                SimpleBlas.posv('U', A.dup(), X);
067                return X;
068        }
069
070//BEGIN
071  // The code below has been automatically generated.
072  // DO NOT EDIT!
073        /** Solves the linear equation A*X = B. */
074        public static FloatMatrix solve(FloatMatrix A, FloatMatrix B) {
075                A.assertSquare();
076                FloatMatrix X = B.dup();
077                int[] ipiv = new int[B.rows];
078                SimpleBlas.gesv(A.dup(), ipiv, X);
079                return X;
080        }
081
082        /** Solves the linear equation A*X = B for symmetric A. */
083        public static FloatMatrix solveSymmetric(FloatMatrix A, FloatMatrix B) {
084                A.assertSquare();
085                FloatMatrix X = B.dup();
086                int[] ipiv = new int[B.rows];
087                SimpleBlas.sysv('U', A.dup(), ipiv, X);
088                return X;
089        }
090
091        
092        /** Solves the linear equation A*X = B for symmetric and positive definite A. */
093        public static FloatMatrix solvePositive(FloatMatrix A, FloatMatrix B) {
094                A.assertSquare();
095                FloatMatrix X = B.dup();
096                SimpleBlas.posv('U', A.dup(), X);
097                return X;
098        }
099
100//END
101}